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Modulational instability of an axisymmetric state in a two-dimensional Kerr medium
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We consider spatial evolution of small perturbations of an axisymmetric state in a stationary
two-dimensional medium with attractive cubic nonlinearity. For the unperturbed state, we find a
one-parameter family of exact weakly localized solutions. The perturbation is expanded over angular
harmonics, and its growth along the radial coordinate is then considered. In contrast to the well
known case of the one-dimensional modulational instability, the integral gain of the radially growing
perturbations converges. It is calculated in the adiabatic approximation, which is valid when the
amplitude A of the unperturbed state and the azimuthal “quantum number” of the perturbation
are both large. In this approximation, the integral gain does not depend upon m, and it increases

linearly with A.

PACS number(s): 03.40.Kf, 42.65.Jx, 67.40.Vs, 52.35.Py

Consideration of axisymmetric solutions (vortices) to
the two-dimensional (2D) nonlinear Schrodinger (NLS)
equation, also known as the Ginzburg-Pitaevsky equa-
tion, was begun long ago in relation to superfluidity
[1,2], as well as in the context of nonlinear optics [3].
Recently, this general problem has gained a renewed in-
terest [4] stimulated by the experimental observation of
stable optical vortices in a self-defocusing Kerr medium
[5].
Stable optical vortices in the form of a “hole” (a two-
dimensional dark soliton) exist in nonlinear media with
repulsive nonlinearity. In a medium with attractive non-
linearity, it is natural to expect that axisymmetric states
(at least those sufficiently slowly vanishing at infinity)
will be subject to modulational instability (MI). Analysis
of MI is one of the fundamental issues in various phys-
ical applications, especially in nonlinear optics [6]. The
objective of this work is MI analysis in the axisymmetric
case.

We start with the general 2D wave equation with the
attractive Kerr (cubic) nonlinearity:

Upt — Ugg — Uyy — |u|2u =0. (1)

‘We are interested in solutions of the form
u(,,.’ ¢; t) — U(T‘, ¢) e—iwt+ikr , (2)

where k is an arbitrary radial wave number, » and ¢ are
the polar coordinates, the function U is assumed to be
slowly varying in comparison with exp(ikr), and w? = k2.
Substituting Eq. (2) into Eq. (1) and omitting the terms
U,, and r~1U,, which are much smaller than the other
terms due to the assumed slow dependence of U upon r,
we obtain the following radial NLS equation:
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2iV, +ip 'V + p Ve + VPV = 0, (3)

where V = k7'U, p = kr. In what follows below, we
are interested in the development of MI along the radial
coordinate p. It may be relevant to mention that this
problem has a certain similarity to the stability analysis
for an expanding cylindrical combustion front in a gas.
It was found that the cylindrical flame’s instability grew
with time not exponentially, but as a certain power of
time (see the original work [7] and the later one [8]).
However, unlike that problem, ours is time independent.

Equation (3) has a one-parameter family of exact ax-
isymmetric solutions

Vo(r) = Ap_1/2+iA2/2, (4)

A being an arbitrary real parameter (the amplitude of
the solution). The solution (4) is weakly localized, in the
sense that |V|2 ~ p~! at p — oco. However, its total
energy

2x [ IVIEpdp
0

strongly (linearly) diverges at p — oo.

The solution (4) is irrelevant at very small p, where
it diverges. However, this is not essential for this work,
where we will study evolution of disturbances propagat-
ing from the center to the periphery. Actually, when the
local amplitude of the solution becomes (at small p) very
large, the cubic term in the underlying equations must
be replaced by a saturable nonlinearity, which will check
the growth of the amplitude.

A perturbed solution is sought in the form

V = Vo(p)(1 +a)e”, (5)

where V; is the unperturbed solution (4), a and 6 be-
ing real perturbations of the amplitude and phase. The
linearized equations for these functions are
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2a, +p %04 = 0, (6)

—26, +2A%p7'a+ p~2aygs = 0. (7)

In what follows below, it will be convenient to use the
standard trick, searching for eigenmodes of the real linear
system of Egs. (6) and (7) in the complex form

a(p, @) = b(p) €™, (®)

8(p,8) = n(p)e™?, ©)

where m is an arbitrary integer. Insertion of Egs. (8) and
(9) into Eq. (6) allows one to exclude n(p) in favor of b(p):
7 = 2m~2p%d, the prime standing for differentiation in
p. Finally, Eq. (7) yields an equation for the amplitude
b(p)

b +2p7 1 + ImPp™* (m? — 24%p) b = 0. (10)

Here it is relevant to come back to Eq. (3) and notice
that we have omitted some small terms when deriving it
from Eq. (1). Obviously, Eq. (10) is meaningful if the
term p~2Vy, in Eq. (3), which gives rise to the terms in
Eq. (10) that depend upon m?2, is much larger than the
omitted terms. A simple consideration shows that this
condition is equivalent to the inequality m? > 1, which
will be assumed to hold. Since the main result to be
obtained below, Eq. (14), does not actually depend upon
m2, this inequality will not really hurt the applicability of
the results. On the other hand, the fact that they apply
(at least, formally) only to large m? but do not depend
upon m? implies that the results will be pertinent for
a case when the initial disturbance is a short-wave one,
being rich in higher harmonics.

Generally, Eq. (10) cannot be solved in standard func-
tions. However, an approximate solution can be found,
in the adiabatic approximation, as follows:

b(p) = exp ( / v(p)dp> , (11)
where it is assumed that
ldv/dp| < 72. (12)

The conditions necessary for Eq. (12) to hold will be
considered in detail below. Then, Eq. (11) yields

vy =p! (\ﬁ + %Am"’p‘1 —imip~2 — 1) (13)

(there are two two different branches of «y; here we chose
the one that can give rise to an instability).

The approximate expression (11) for the perturbation
amplitude b(p) describes growth of the perturbation, i.e.,
development of the MI, as long as v given by Eq. (13)
remains real and positive. According to Eq. (13), this
holds at p > po = m2/2A. Then, the integral instability
gain (IIG) can be defined as follows:

['(m?, A) = /

Po

+o0
v(p)dp . (14)

A principal difference of the considered axisymmetric
problem from the traditional 1D problem is the fact that
here the IIG converges, while in 1D it obviously diverges
at z — oo, z being the propagation distance.

It is necessary to stress that the convergence of the
IIG is not an artifact of the approximation employed. In-
deed, a straightforward asymptotic analysis of Eq. (10)
at p — oo, without using the approximation (11), shows
that the perturbation never grows in this limit. This is
a drastic difference from the above-mentioned instability
problem for the expanding cylindrical flame [7], where
the perturbation slowly grows at p — oo, that is equiva-
lent to a logarithmic divergence of the corresponding IIG.
It is also relevant to emphasize that, although we have
explicitly considered only the case of large m2, the IIG
for small m? does not diverge either. The simplest way
to check this is to notice that Egs. (6) and (7) without
the ¢ derivatives (m = 0) do not have solutions growing
at p — oo.

Now, it is relevant to obtain conditions which provide
for the underlying inequality (12) to hold. First of all,
this inequality does not hold at p — oo, when Eq. (13)
yields v = JAm?2p~2. However, when analyzing this
asymptotic expression, it is straightforward to see that
the inequality (12) still holds at p << Am?. On the other
hand, the convergent integral (14), with y(p) as per Eq.
(13), is dominated by a contribution from p ~ m?/A.
Confronting these two ranges of p, one concludes that
the adiabatic approximation remains relevent for calcu-
lation of the IIG provided that A% >> 1. The meaning of
this condition is very simple: the adiabatic approxima-
tion is legitimate if the dimensionless amplitude A of the
unperturbed solution is large.

The approximation is not valid either in a vicinity of
the above-mentioned point pg, at which vy(p) = 0. How-
ever, it is easy to check that the validity of the approxi-
mation is restored at p — po > mA~3/2. Comparing this
with the estimate given above, one concludes that this
restriction is immaterial due to the conditions adopted,
A% > 1 and m?2 > 1.

Let us come back to calculation of the IIG. Inserting
Eq. (13) into Eq. (14), one can perform the integration
to arrive at the expression I'(m?, A) = Atan—1(A4/2) —
In(1+ A2%/4), which can be further simplified with regard
to the condition (4/2)% > 1:

A
5"

Notice that the expression (15) does not actually de-
pend upon the azimuthal “quantum number” m (al-
though this expression is relevant, as was explained
above, only for large m?). Thus, in the approximation
considered, the integral MI gain takes the same value for
all the values of m. Having arbitrary initial perturbations
a(®)(¢) and 0(°)(¢) at a certain point p(%), one should de-
compose them over the set of the eigenmodes exp(im¢),
considering the evolution of each component separately
as was done above.

It is noteworthy to mention that IIG (15) grows ap-
proximately linearly with amplitude A of the unper-
turbed solution (4). This means that the actual ampli-

I(m?,A) = ’E'A—zln (15)
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fication factor of the perturbation produced by the MI,
expI'(A), grows exponentially with A,

el = (4/2)72em4/2 (16)

In conclusion, in this work we have considered the
evolution of small perturbations along the radial coor-
dinate on the background of an axisymmetric state in
a two-dimensional stationary medium with the Kerr at-
tractive nonlinearity. The unperturbed state was found
in an exact form. In the adiabatic approximation, valid
when both the amplitude of the unperturbed state and

the azimuthal “quantum number” m are large, we have
calculated the integral modulational instability gain for
azimuthal eigenmodes of the perturbations. The integral
gain does not depend upon m, and it is a linearly growing
function of the unperturbed state’s amplitude. However,
the integral gain converges in contrast with the genuine
1D case.
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